If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-3n-51=0
a = 1; b = -3; c = -51;
Δ = b2-4ac
Δ = -32-4·1·(-51)
Δ = 213
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{213}}{2*1}=\frac{3-\sqrt{213}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{213}}{2*1}=\frac{3+\sqrt{213}}{2} $
| 1=4÷j-2 | | 7-1/16k=-2 | | 2(r–7)=10 | | 1=j÷4-2 | | 4 = 16d | | 18+7=-5(5x-5) | | -16u+19u=-18 | | 31/8p+3/4p=259/12 | | 17-3y=5y-1 | | 6(x+8)-3=45 | | 3y+4/2-6y=-2/5 | | n^2-8n-30=0 | | x=24÷3(2) | | 65=15x=35 | | x=24÷3(2)= | | 8x+7=5x+6 | | 2x+28+x^2=0 | | 5(2x+7)=-30+5 | | 3^x=189 | | 8×+7=5x+6 | | 82-y=76 | | 9b=7b-10 | | 26=7x+1-2x | | -2x-15=-9 | | 20+n=41 | | -8(2-r)=24 | | a2-12a+35=0 | | 7-3w=28 | | 10+-4w=6 | | -4+x=-6+1/5x | | 1/2k+6=4k-8 | | 7x+2=1x+8 |